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Abstract

The proper analysis of experiments to measure the
quantum-mechanical phase shift due to potential
gradients such as gravity across a perfect-silicon-crystal
Mach±Zehnder interferometer for neutrons is compli-
cated by the highly dispersive nature of the dynamical
diffraction process describing the propagation of
neutrons through a perfect crystal. Through dynamical
diffraction, a coherent monochromatic incident beam of
neutrons that does not exactly satisfy the Bragg
condition is split into two currents within each crystal
so that there are 16 possible coherent interfering
trajectories by which the neutron can traverse the
interferometer. In this work, previous calculations of the
effects of dynamical diffraction on gravitationally
induced phase-shift measurements are extended to
include effects in all exit beams and internal effects
within the subbeams for both symmetric and skew-
symmetric interferometers. For the interferometers used
in a recent experiment in which the gravitationally
induced phase shift of the neutron is measured with a
statistical uncertainty of the order of 1 part in 1000, it is
found that these effects predict an increase of a few
percent in the magnitude of the phase shift. Addition-
ally, some consequences on the phase and contrast of
restricting the beams within and after the interferometer
are discussed. Agreement of this theory with experiment
and the general applicability of the model is discussed.

1. Introduction

The in¯uence of gravity on the quantum-mechanical
phase of the neutron de Broglie wave in a neutron
interferometer was ®rst observed by Colella et al. (1975)
and then more accurately by Staudenmann et al. (1980),
beginning a series of experiments of increasing sophis-
tication (Werner et al., 1986, 1988; Werner, 1994;
Jacobson, 1997; Littrell et al., 1996, 1997). The results of
these experiments, collectively known as COW experi-
ments, necessarily depend on both Planck's constant h-

and Newton's universal gravitational constant G. This

dependence allows the principle of equivalence to be
studied in the quantum limit.

The validity of the classical principle of equivalence
has been veri®ed to a very high precision (Roll et al.,
1967). Similarly, it has been demonstrated (Koester,
1975) that the probability density of a neutron in the
Earth's gravitational ®eld follows the same parabolic
trajectory as a classical point particle with the same
inertial mass to within an uncertainty of 3 parts in
10 000. The most recent precise measurements of the
COW type (Werner et al., 1988; Littrell et al., 1997) have
shown disturbing discrepancies on the order of 1%
between theory (including all known corrections) and
experiment. Statistical errors and estimated and
measured uncertainties in the experimental parameters
are on the order of 1 part in 1000.

The experimental arrangement for a measurement of
the phase shift of a neutron due to the Earth's gravita-
tional ®eld is shown in Fig. 1. A nearly monochromatic
collimated beam of neutrons is incident upon a neutron

Fig. 1. A schematic diagram of the experimental arrangement. One
beam of the interferometer is raised above the other by tilting the
interferometer an angle � about the incident beam. An additional
phase shift due to the interaction of neutrons with matter can be
introduced by rotating an aluminium phase shifter extending across
both subbeams through an angle �.



interferometer constructed out of a single perfect crystal
of silicon. The crystal lattice of the silicon acts as a three-
dimensional diffraction grating for neutrons, allowing
the various blades of the interferometer to act as mirrors
or beam splitters due to Bragg diffraction. A perfect
crystal is used to ensure that the lattice planes of the
various blades are perfectly aligned. The ®rst blade of
the interferometer splits the neutron beam into two
components that are redirected by the intermediate
blades to recombine in the ®nal blade. The inter-
ferometers used in these experiments, ®rst developed for
X-rays by Bonse & Hart (1965) and demonstrated to
work for thermal neutrons by Rauch et al. (1974), are
analogous in geometry to Mach±Zehnder inter-
ferometers for light. The difference in optical path
length and therefore the phase accumulated by a
neutron along one path relative to the other can be
modi®ed by varying the potential energy of the neutron
along either of the two spatially separated beam paths.
These differences in accumulated phase are measured as
the exchange of intensity back and forth between the
two 3He proportional detectors labeled C2 and C3 in
Fig. 1.

It is possible to produce phase shifts in these experi-
ments either by changing the neutron±nuclear optical
potential or the gravitational potential energy of the
neutron along one path relative to the other. The phase
shift due to the neutron±nuclear optical potential is
adjusted using a 1 mm thick aluminium phase ¯ag. The
phase ¯ag is placed across both beams and rotated
through the angle labeled � in Fig. 1 about an axis
perpendicular to the scattering plane of the inter-
ferometer, varying the difference in optical path length
that the two beams must travel in aluminium. A gravi-
tational phase shift is produced by tilting the entire
assembly consisting of the interferometer, detectors and
phase ¯ag about the incident beam of neutrons through
the angle labeled � in Fig. 1 so that the horizontal
portions of the two beam paths labeled I and II in Fig. 1
are at different heights and thus different gravitational
potentials.

The dynamical theory of diffraction for neutrons
predicts that neutrons that nearly, but not exactly, satisfy
the Bragg condition follow several trajectories through
the interferometer. Since these paths form multiple
interacting interferometers, the interference pattern
observed as the interferometer is tilted in a gravitational
®eld differs greatly from that expected from assuming
the simple two-path Mach±Zehnder interferometer
geometry that describes the case when the Bragg
condition is exactly satis®ed. These effects must be
understood in order to properly interpret the results of a
gravitational phase-shift measurement. In this paper, we
extend previous calculations (Horne, 1986; Werner et al.,
1988) of the effects of dynamical diffraction on the
intensity measured in the C3 (or O-beam) detector using
symmetric interferometers to include effects in the C2

(or G-beam) and skew-symmetric interferometers. We
also analyze interference effects internal to each of the
two beams independent of the other and the resulting
single-beam gravity-induced phase shifts observable in
the C1 beam and the C4 beam. Finally, we discuss
interference effects observed in the C2 and C3 beam
detectors when one beam of the interferometer is
blocked.

Our theoretical predictions for various diffraction and
interference effects are compared with data obtained
with the two interferometers used in a recently
completed experiment (Littrell et al., 1997) in which we
used neutrons to characterize both the phase shifts due
to bending of the interferometer and due to gravity
acting on the neutron wavefunction as a function of the
tilt angle �. The device shown in Fig. 2 is a skew-
symmetric interferometer with blade separations d1 �
16.172 (3) mm and d2 � 49.449 (3) mm and blade
thickness a � 2.621 (3) mm. The other interferometer,
shown in Fig. 3, is a symmetric interferometer similar in
geometry to the ones used in previous COW
experiments but larger in size and therefore more
sensitive. It has a separation between blades
d1 � d2 � 50.404 (3) mm and a blade thickness of
3.077 (3) mm. The interferometers were machined from
high-purity semiconductor-quality nearly perfect single-
crystal silicon ingots using a combination of 200 and 400
grit diamond wheels and subsequently etched in the
standard silicon etchant mixture of 18% hydro¯uoric
acid, 52% nitric acid and 25% glacial acetic acid by
volume to reduce the strains induced by machining by
removing approximately 70 mm of material from all
surfaces.

The incident beam was de®ned by a circular aperture
7 mm in diameter placed perpendicular to the incident

Fig. 2. A photograph of the skew-symmetric interferometer used in this
experiment. The dimensions (de®ned in Fig. 1) of the interferometer
are d1 = 16.172 mm, d2 = 49.449 mm and a = 2.621 mm. This
interferometer was machined in the physics shop at the University
of Missouri±Columbia.
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beam 5 cm from the splitter blade of the interferometer
for measurements with the skew-symmetric inter-
ferometer and by one 10 mm in diameter for those
measurements using the symmetric interferometer.

2. Theoretical background

The most convenient reference frame for calculation of
the phase shift due to gravity is the frame of the inter-
ferometer at rest on the surface of the Earth. Since the
Lagrangian L of the neutron in the rotating frame of the
Earth is time independent, the phase shift in the inter-
ferometer can be calculated from the path integral

�� � �1=h- �
� R

path II

p � dlÿ R
path I

p � dl

�
; �1�

where

p � @L=@v � miv�mix� x �2�
is the canonical momentum of the neutron in this
frame. In this expression, v is the velocity of the
neutron in the laboratory frame as obtained from the
classical equations of motion, x is its position vector
relative to the interferometer, mi is its inertial mass,
and x is the Earth's angular velocity of rotation.
The labels path I and path II in equation (1) refer
to the trajectories that the neutron follows through
the interferometer neglecting the effects of gravity
and the phase shifter. This perturbative method,
based on the idea of Feynman±Dirac path integrals
(Dirac, 1945; Feynman, 1948), is accurate to ®rst
order in the potential energy for potential energies
small relative to the kinetic energy of the free
particle as discussed by Greenberger & Overhauser
(1979) and Opat (1995).

In the free space between the interferometer blades,
the canonical momentum to ®rst order in g is

p � mi�v0 ÿmgg � x=miv0� l̂�mix� x; �3�
where mg is the gravitational mass of the neutron, l̂ is the
unit vector along its trajectory, v0 � 2�h- =m� is its speed
when it enters the interferometer and

g � ÿ��GM=R2�R̂� �mi=mg�x� �x� R�� �4�
is the classical effective acceleration due gravity felt by
the neutron due to the combined action of the gravita-
tional and centrifugal forces. Here, M is the mass of the
Earth and R is the vector from the center of the Earth to
the point at which the neutron enters the interferometer.
Inside the aluminium phase-shifter slab, the canonical
momentum is

p � mi�v0 ÿ �mgg � x=miv0� ÿ Un=miv0� l̂�mix� x:

�5�
The neutron±nuclear optical potential Un, related to the
strong force of interaction between the neutron and the
aluminium nuclei, is

Un � 2�h- 2Nb=m; �6�
where N is the number density of atoms in the alu-
minium and b is the average coherent neutron scattering
length for the aluminium nuclei. Since, for � ' 2 AÊ

neutrons, mgg ' 1 meV cmÿ1, Un ' 0.05 meV and
E � miv

2
0=2 ' 20 meV, the use of these approximate

canonical momenta and the semiclassical perturbative
approach for calculating the phase shifts as described by
equation (1) is valid.

If we assume that the incident beam is level and all
neutrons exactly satisfy the Bragg condition, gravity and
the centrifugal force due to the Earth's rotation result in
a phase shift of

��COW � �mg=h- v�
� R

path II

g � x dl ÿ R
path I

g � x dl

�
� ÿmggA0 sin �=h- v0

� ÿ2��mimg�g=h2�A0 sin �; �7�
where

A0 � �2d1d2 � a�d1 � d2�� tan �B �8�
is the area enclosed by the trajectories of the neutrons
(see Fig. 1) that exactly satisfy the Bragg condition along
the two paths of the interferometer assuming no
de¯ections due to potentials other than that of the
interferometer itself, and �B is the Bragg angle for the
mean neutron wavelength. We note that the area
dependence of ��COW is a mathematical artifact of the
Mach±Zehnder interferometer geometry. The funda-
mental quantity upon which this phase shift depends is
the height of one path above the other. Thus, a gravi-
tational phase shift will also be present in inter-
ferometers in other geometries such as the Michelson
geometry where there is no area enclosed by the paths

Fig. 3. A photograph of the symmetric interferometer used in this
experiment. The blades of the interferometer are 3.077 mm thick
and 50.404 mm apart. This interferometer was machined at
Atominstitut, Vienna, Austria.
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of the interferometer but the average height of the
neutrons along the two paths can vary. Equation (8) is
presented for the more general situation of a skew-
symmetric interferometer; for a symmetric inter-
ferometer d1 � d2. Equation (7) is frequently referred to
as the COW formula (Colella et al., 1975).

Since the experiment is performed in the Earth's
rotating frame of reference, the Coriolis force on the
moving neutron gives rise to a phase shift known as the
Sagnac or Page effect (Sagnac, 1913a,b; Page, 1975;
Anandan, 1979, 1981; Stodolsky, 1979). It is given by

��Sagnac��; �� � �mi=h- �x �
� R

path II

x � dlÿ R
path I

x � dl

�
� �mi=h- � H �x� x� dl

� 2mix �A0=h- ; �9�
where A0 is the normal area vector corresponding to the
loop in space whereby the neutron leaves the source
along path II and returns to it via path I. Since, in the
experiments at the MURR reactor in Missouri, the
beam incident on the interferometer is oriented along a
local North±South line and is level with respect to the
Earth, the Sagnac phase shift for our experimental
situation is

��Sagnac � ÿs cos � tan �B: �10�
The factor s is given by

s � 2mi!A0 cos �L=h- tan �B; �11�
where �L � 51:37� is the colatitude angle for Columbia,
Missouri. Since previous experiments (Werner et al.,
1979; Atwood et al., 1984) have shown that the Sagnac
phase shift agrees with theory to within the accuracy of
the experimental data, we treat it as a known quantity.
Its magnitude is about 2% of the phase shift due to
gravity.

The phase shift due to the aluminium phase shifter is
determined by the difference in the thicknesses of
aluminium along the two paths. From the geometry of
the experiment, this nuclear phase shift is

��nuc��; �� � �NbD�1=cos��B � �� ÿ 1=cos��B ÿ ���;
�12�

where D is the thickness of the phase shifter and � is the
angle through which it is rotated de®ned as shown in
Fig. 1.

The interferometers are inevitably somewhat strained
as a result of the process of machining with diamond
cutting wheels, even after etching, and the way in which
they are mounted in the apparatus. They can also
deform under their own weight when tilted. We have
assumed for the purpose of our analysis of the experi-
mental results that the only effects of bending and
strains on the phase are the result of a slightly longer

free-space path length in one path of the interferometer
than in the other. This produces a phase shift of

��bend��; �� � 2��ÿ1�l���; �13�
where �l(�) is the amount that path II is longer than
path I due to bending.

3. Single-crystal amplitudes

In order to describe the effects of dynamical diffraction
in the interferometer, we need to discuss the re¯ection
and transmission coef®cients due to diffraction in each
crystal. Consider a plane-wave component of the inci-
dent beam with a wavevector k in free space such that it
is incident on the ®rst blade of the interferometer at an
angle slightly less than the Bragg angle. In this situation,
the off-Bragg parameter y, de®ned by

y � �ÿ2k � g�G �G�=�4mjVGj=h- 2� � ÿ���0=dhkl;

�14�
is positive. This parameter is used to characterize the
deviation �� from the exact Bragg condition and
determines the paths along which this plane-wave
component travels through the interferometer as it is
diffracted by the crystal lattice planes of reciprocal-
lattice vector G. In this expression, VG is the
Fourier component of the neutron interaction potential
with the silicon crystal corresponding to G,
�0 � �h- 2k cos �B=mijVGj is the PendelloÈsung length and
dhkl is the spacing between the diffracting lattice planes.
Here, k � 2�=� is the modulus of k, the incident
neutron wavevector. Dynamical diffraction within the
crystal produces two neutron current branches asso-
ciated with this component, labeled � and �, as shown in
Fig. 4. These current branches traverse the crystal at
angles�
 relative to the diffracting planes. The value of

 is determined in terms of y by the relation

tan 
 � ÿ tan �B; �15�
where

ÿ � y�1� y2�ÿ1=2: �16�
Since the amount that the currents for a given value of
the y parameter are displaced along the exit face of a
crystal of thickness a relative to the currents when y � 0,
given by

�x � aÿ tan �B; �17�
is proportional to the dimensionless parameter ÿ, we
will use ÿ to provide a scale to describe beam pro®les on
the exit crystal surfaces. At the exit face of the crystal,
each current branch releases two waves, one with its
wavevector in the O or incident direction and the other
in the G or diffracted direction.

The situation in the ®rst blade of the interferometer is
illustrated in Fig. 4(a). The situation in the intermediate
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or mirror blade in path I and the ®nal or analyzer blade
in path II is the same. For the second re¯ection along
each path, at the mirror blade in path II and the analyzer
blade in path I, the situation differs as illustrated in Fig.
4(b). For this situation, the reciprocal-lattice vector is
now ÿG and �� is positive so that y and thus ÿ are both
negative. The re¯ection and transmission coef®cients
describing the amplitudes of these waves as determined
from the dynamical theory of diffraction are given in
Table 1.

In his original analysis, Horne (1986) assumed that the
incident beam illuminates the interferometer through a
slit that is much larger than the average neutron wave-
length, so that single-slit diffraction can be ignored, but
much smaller than the thickness of the crystal, so that
the � and � branches arising from a single point on the
front surface of a crystal blade are physically separated
and thus do not interfere with each other at the back
surface. Although the ®rst assumption is certainly valid
for the experimental conditions of neutron gravitational
phase shift measurements, the second often is not.
However, this argument may still be valid as the blade

thickness is much greater than the transverse coherence
length (Rauch et al., 1996) of the incident neutrons.
Since the relative strengths of the independent � and �
neutron current branches are determined at the surface
at which the neutron enters the crystal, the internal
PendelloÈsung interference current present in the crystal
can be disregarded in the calculation of the trajectories
of the neutrons within the crystal as it represents the
results of the superposition of the two current branches,
not an exchange of neutrons between them.

4. Theoretical gravity interferogram

The beam geometry as predicted by the dynamical
diffraction theory for a skew-symmetric interferometer
is shown in Fig. 5. Instead of only two paths through the
interferometer, there are in reality 16 different paths for
each value of ÿ leading to the four points labeled a, b, c
and d at positions on the exit face of the analyzer blade
ÿA � 3ÿ, ÿ,ÿÿ andÿ3ÿ, respectively. Each of the eight
numbered paths in the two intermediate mirror crystals
contributes intensity to two of the exit points. The pairs
of paths leading to the exit points a and d, referred to as
maverick paths (Horne, 1986), travel along either the �
or the � current branch exclusively in all three crystals.
The sets of six paths leading to points b and c travel
along both � and � branches with the same number of
each for all paths along both beams leading to the same
exit point. These paths are referred to as the primary
paths.

Table 1. Functional dependence of the a and b current
branch re¯ection and transmission coef®cients on ÿ

Coef®cient Amplitude

R��ÿ� 1
2 �1ÿ ÿ2�1=2

R��ÿ� ÿ 1
2 �1ÿ ÿ2�1=2

T��ÿ� 1
2 �1ÿ ÿ�

T��ÿ� 1
2 �1� ÿ�

Fig. 5. A diagram of the 16 possible paths through the interferometer
predicted by dynamical diffraction theory. Paths exiting the
interferometer at the same point on the analyzer blade interfere
with each other but do not interfere coherently with paths exiting at
other points.

Fig. 4. Diagram showing the four waves present in a blade of the
interferometer for neutrons with incident off-Bragg parameter y
positive (a) before re¯ection (initial incidence or after two
re¯ections) and (b) after one re¯ection.
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The phase accumulated by the neutron along each of
these paths is calculated by the use of equation (1). The
amplitudes and phase shifts for the 16 paths leading to
points a, b, c and d are presented in Table 2 for the C2
(or G) beam and in Table 3 for the C3 (or O) beam. In
these tables, the label 1a means path 1 through the
middle mirror crystal and point a on the analyzer crystal;
path 1b means path 1 through the middle mirror crystal
and point b on the analyzer crystal, and so on. The phase
shift

��0��; �� � ��COW��� ���nuc��� �18�
refers to the gravity-induced and nuclear phase shifts
when the Bragg condition is exactly satis®ed as
described above by equations (7) and (12), respectively.
The term � is the average gravitational phase shift due
to the area between the adjacent paths comprising either
of the subbeams (labeled beam I and beam II in Fig. 5)
at ÿ � 1 and is given by the expression

�����a�d1 � d2� � 2a2� tan �B��COW���=A0: �19�
The term

���� � a�d2 ÿ d1� tan �B��COW���=2A0 �20�
represents corrections to the gravity-induced phase shift
due to asymmetry of the interferometer. We have taken
into account the reduced effective speed of the neutron
while diffracting in the crystal (Shull et al., 1980),

v0 � v0 cos �B=cos 
; �21�
in calculating these phase shifts. A very simpli®ed
explanation for both the effective velocity and the need
to account for it in these calculations is that the neutron
can be thought of as traveling with constant speed within
the the crystal and being either re¯ected or transmitted
by each set of crystal planes that it encounters, with the
strengths of the re¯ection and transmission coef®cients
dependent on ÿ. In this picture, the neutron trajectories

described here are the weighted average of all possible
trajectories of neutrons with that value of ÿ and thus
neglect the rapid changes in trajectory due to re¯ection,
reducing to a straight line. However, since all neutrons
actually have the same optical path length within the
crystal, the time required to transit the crystal is the
same, giving rise to the effective velocity described by
equation (21). For the special case of a symmetric
interferometer (d1 � d2), � � 0 and � simpli®es to

���� � �a=d1���COW���: �22�
The phase shifts due to the Sagnac effect and bending
have been omitted. The phase shifts common to all paths
in both beams leading to the same exit point such as the
PendelloÈsung phases due to � and � branch diffraction
and the gravitational phase shift due to the height
difference between the entrance and exit points are also
not included in the table.

The amplitudes and phase shifts for the paths termi-
nating at points c and d display the symmetry of the
problem in the following manner: If the incident ÿ is
negative, the sets of paths leading to points c and d
overlay the paths leading to points b and a for the
corresponding positive incident ÿ, respectively. Thus,
the phase accumulated along these paths is identical to
the phase accumulated in the corresponding paths for
positive incident ÿ. The amplitudes along these paths
are determined by replacing the � and � branch re¯ec-
tion and transmission coef®cients for the corresponding
path with positive incident ÿ with the band � branch
coef®cients, respectively, and reversing the sign of ÿ for
each coef®cient. The amplitudes of the paths for inci-
dent negative ÿ are identical to their counterparts for a
positive ÿ in the paths leading to the C3 detector and
equal in magnitude and opposite in sign for those
leading to the C2 detector since each modi®cation of a
re¯ection coef®cient produces a change of sign. Like-
wise, the phase accumulated along the trajectories

Table 2. Amplitudes and accumulated phases of the paths in the C2 detector beam that exit the analyzer blade of the
interferometer at points a and b as shown in Fig. 5

Path Coef®cient Amplitude Phase

1a R��ÿ�R��ÿÿ�R��ÿ� 1
8 �1ÿ ÿ2�3=2 ��0=2� ÿ�

5a T��ÿ�R��ÿ�T��ÿÿ� 1
8 �1ÿ ÿ2�3=2 ÿ��0=2ÿ ÿ�

1b R��ÿ�R��ÿÿ�R��ÿ� ÿ 1
8 �1ÿ ÿ2�3=2 ��0=2� ÿ��� ��

2b R��ÿ�R��ÿÿ�R��ÿ� ÿ 1
8 �1ÿ ÿ2�3=2 ��0=2ÿ ÿ�

3b R��ÿ�R��ÿÿ�R��ÿ� ÿ 1
8 �1ÿ ÿ2�3=2 ��0=2ÿ ÿ��ÿ ��

5b T��ÿ�R��ÿ�T��ÿÿ� 1
8 �1ÿ ÿ2�1=2�1ÿ ÿ�2 ÿ��0=2� ÿ��ÿ ��

6b T��ÿ�R��ÿ�T��ÿÿ� ÿ 1
8 �1ÿ ÿ2�3=2 ÿ��0=2� ÿ�

7b T��ÿ�R��ÿ�T��ÿÿ� 1
8 �1ÿ ÿ2�1=2�1� ÿ�2 ÿ��0=2ÿ ÿ��� ��

4d R��ÿ�R��ÿÿ�R��ÿ� ÿ 1
8 �1ÿ ÿ2�3=2 ��0=2ÿ ÿ�

8d T��ÿ�R��ÿ�T��ÿÿ� ÿ 1
8 �1ÿ ÿ2�3=2 ÿ��0=2� ÿ�

4c R��ÿ�R��ÿÿ�R��ÿ� 1
8 �1ÿ ÿ2�3=2 ��0=2ÿ ÿ��� ��

3c R��ÿ�R��ÿÿ�R��ÿ� 1
8 �1ÿ ÿ2�3=2 ��0=2� ÿ�

2c R��ÿ�R��ÿÿ�R��ÿ� 1
8 �1ÿ ÿ2�3=2 ��0=2� ÿ��ÿ ��

8c T��ÿ�R��ÿ�T��ÿÿ� ÿ 1
8 �1ÿ ÿ2�1=2�1� ÿ�2 ÿ��0=2ÿ ÿ��ÿ ��

7c T��ÿ�R��ÿ�T��ÿÿ� 1
8 �1ÿ ÿ2�3=2 ÿ��0=2ÿ ÿ�

6c T��ÿ�R��ÿ�T��ÿÿ� ÿ 1
8 �1ÿ ÿ2�1=2�1ÿ ÿ�2 ÿ��0=2� ÿ��� ��
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leading to points c and d for positive ÿ are the same as
those accumulated along those leading to points b and a
for negative ÿ. The amplitudes are of equal magnitude
and opposite sign for the C2 detector beam and identi-
cally equal for the C3 beam.

In order to calculate the intensity pro®les and inte-
grated intensities of the exit beams for the inter-
ferometer, we assume that the angular divergence of the
incident beam is broad in comparison to the Darwin
width or, alternatively, the distribution of the neutrons
in the incident beam as a function of their incident off-
Bragg parameter y is given by

P�y� � 1: �23�

Note that the de®nition of P(y) is not a probability as it
is not normalized but instead is a statement that all
possible values of y are equally likely. Although this
assumption leads to the unphysical results that the
integrated intensities of both the incident beam and the
C4 beam are in®nite, it is not unreasonable in that the
distribution in wavevector of neutrons incident on the
interferometer is much broader than the range of
wavevectors for neutrons that participate in interference
and is approximately constant across this range.
Neutrons traveling along the paths leading to each of the
exit points interfere with each other but not with
neutrons that travel to different points as the neutron
wave packets, as determined by the transverse coher-
ence length, do not overlap. Although neutrons incident
with an off-Bragg parameter of ÿy have the same
trajectories to the same exit points as those with an off-
Bragg parameter of �y, they will not interfere with each
other as they are assumed to arise from separate and
distinct plane-wave components coming from the
monochromator with no ®xed phase relationship. Since
ÿ is related to y as given in equation (16), the distribu-
tion of the incident neutrons as a function of ÿ is

P�ÿ� � P�y�jdy=dÿj � �1ÿ ÿ2�ÿ3=2: �24�
In calculating the total intensity measured by the
detectors, we assume that all neutrons from all four exit
points are accepted and detected by either the C2 or C3
detector. With these assumptions, the contribution to
the total intensity measured in the C2 detector due to
the component of the incident beam with a given value
of ÿ and an interferometer tilt angle � is given by

IC2��;ÿ� � 1
32 �1ÿ ÿ2�ÿ1=2f�1� ÿ�4 � �1ÿ ÿ�4
� 2�1ÿ ÿ2�2�3� 2 cos 2ÿ��
ÿ 4ÿ2�1ÿ ÿ2��cos ÿ��ÿ 2��
� cos ÿ��� 2���g
ÿ 1

16 �1ÿ ÿ2�1=2 cos ��0f4ÿ2�cos ÿ�

� cos ÿ�� � �1� ÿ2��cos 2ÿ��� ��
� cos 2ÿ��ÿ ���g
� �ÿ=8��1ÿ ÿ2�1=2 sin ��0f2 sin ÿ�

� �sin 2ÿ��� �� � 2ÿ��ÿ ���g: �25�
Likewise, the distribution of the intensity measured in
the C3 detector as a function of incident ÿ is given by

IC3��;ÿ� � 1
8 �1ÿ ÿ2��1� ÿ2�1=2f2�1� ÿ2�
ÿ �1ÿ ÿ2� cos 2ÿ�� �1� ÿ2� cos ÿ��ÿ 2��
ÿ �1ÿ ÿ2� cos ÿ��� 2��g
� 1

16 �1ÿ ÿ2�1=2 cos ��0f4ÿ2�cos ÿ�

� cos ÿ�� � �1� ÿ2��cos 2ÿ��� ��
� cos 2ÿ��ÿ ���g ÿ �ÿ=8��1ÿ ÿ2�1=2

� sin ��0f2 sin ÿ�� �sin 2ÿ��� ��
� sin 2ÿ��ÿ ���g: �26�

The intensity distributions given by equations (25) and
(26) are even functions of ÿ due to the relationships

Table 3. Amplitudes and accumulated phases of the paths in the C3 detector beam that exit the analyzer blade of the
interferometer at points a and b as shown in Fig. 5

Path Coef®cient Amplitude Phase

1a R��ÿ�R��ÿÿ�T��ÿ� 1
8 �1ÿ ÿ2��1ÿ ÿ� ��0=2� ÿ�

5a T��ÿ�R��ÿ�R��ÿÿ� 1
8 �1ÿ ÿ2��1ÿ ÿ� ÿ��0=2ÿ ÿ�

1b R��ÿ�R��ÿÿ�T��ÿ� 1
8 �1ÿ ÿ2��1� ÿ� ��0=2� ÿ��� ��

2b R��ÿ�R��ÿÿ�T��ÿ� ÿ 1
8 �1ÿ ÿ2��1ÿ ÿ� ��0=2ÿ ÿ�

3b R��ÿ�R��ÿÿ�T��ÿ� ÿ 1
8 �1ÿ ÿ2��1ÿ ÿ� ��0=2ÿ ÿ��ÿ ��

5b T��ÿ�R��ÿ�R��ÿÿ� ÿ 1
8 �1ÿ ÿ2��1ÿ ÿ� ÿ��0=2� ÿ��ÿ ��

6b T��ÿ�R��ÿ�R��ÿÿ� ÿ 1
8 �1ÿ ÿ2��1ÿ ÿ� ÿ��0=2� ÿ�

7b T��ÿ�R��ÿ�R��ÿÿ� 1
8 �1ÿ ÿ2��1� ÿ� ÿ��0=2ÿ ÿ��� ��

4d R��ÿ�R��ÿÿ�T��ÿ� 1
8 �1ÿ ÿ2��1� ÿ� ��0=2ÿ ÿ�

8d T��ÿ�R��ÿ�R��ÿÿ� 1
8 �1ÿ ÿ2��1� ÿ� ÿ��0=2� ÿ�

4c R��ÿ�R��ÿÿ�T��ÿ� 1
8 �1ÿ ÿ2��1ÿ ÿ� ��0=2ÿ ÿ��� ��

3c R��ÿ�R��ÿÿ�T��ÿ� ÿ 1
8 �1ÿ ÿ2��1� ÿ� ��0=2� ÿ�

2c R��ÿ�R��ÿÿ�T��ÿ� ÿ 1
8 �1ÿ ÿ2��1� ÿ� ��0=2� ÿ��ÿ ��

8c T��ÿ�R��ÿ�R��ÿÿ� ÿ 1
8 �1ÿ ÿ2��1� ÿ� ÿ��0=2ÿ ÿ��ÿ ��

7c T��ÿ�R��ÿ�R��ÿÿ� ÿ 1
8 �1ÿ ÿ2�1� ÿ� ÿ��0=2ÿ ÿ�

6c T��ÿ�R��ÿ�R��ÿÿ� 1
8 �1ÿ ÿ2��1ÿ ÿ� ÿ��0=2� ÿ��� ��
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between the amplitudes and phases at the four exit
points. Although the explicit dependence of the inten-
sity in the C2 detector on the phase factor ��0 is equal
and opposite to that of the intensity in the C3 detector,
the two intensities do not sum to a constant value as the
mean intensities measured in the two detectors depend
differently on the tilt angle �.

It is also interesting to consider the distribution of
intensity accepted by the detectors as a function of the
position of the exit point ÿA on the analyzer blade. The
distribution of neutrons as a function of ÿA along any
given path based on the assumed incident spectrum
ignoring the dependence on y or ÿ of the amplitude of
that path is

Pp�ÿA� � �1ÿ ÿ2
A�ÿ3=2 �27�

for the primary paths, and

PM�ÿA� � 1
3 �1ÿ �ÿA=3�2�ÿ3=2 �28�

for the maverick paths, based on the values of ÿA in
terms of the incident ÿ at the exit points. Thus, the
distribution of intensity across the beam to the C2
detector is given by

IC2P��;ÿA� � 1
32 �1ÿ ÿ2

A�ÿ1=2f�1� ÿA�4 � 4�1ÿ ÿ2
A�2

� �1� cos 2ÿA�� � �1ÿ ÿA�4
� 4ÿA�1ÿ ÿ2

A���1ÿ ÿA� cos ÿA��ÿ 2��
ÿ �1� ÿA� cos ÿA��� 2���g
ÿ 1

16 �1ÿ ÿ2
A�1=2 cos ��0f�1� 3ÿ2

A�
� cos ÿA� � 4ÿ2

A cos ÿA�

� �1� ÿA�2 cos 2ÿA��� ��
� �1ÿ ÿA�2 cos 2ÿA��ÿ ��g
� 1

16 �1ÿ ÿ2
A�1=2 sin ��0f�3ÿ2

A � 1�
� sin 2ÿA� � 4ÿA sin ÿ�

� �1� ÿA�2 sin 2ÿA��� ��
� �1ÿ ÿA�2 sin 2ÿA��ÿ ��g �29�

due to the primary paths, and

IC2M��;ÿA� � 1
48 �1ÿ �ÿA=3�2�3=2

� �1ÿ cos ��0 cos�2ÿA�=3�
� sin ��0 sin�2ÿA�=3�� �30�

due to the maverick paths. Likewise, the contributions to
the intensity pro®le of the C3 beam due to the primary
and maverick paths are given by

IC3P��;ÿA� � 1
16 �1ÿ ÿ2

A�1=2f2�1ÿ ÿA�2 ÿ 4�1ÿ ÿ2
A�

� cos 2ÿA�� �1� ÿA�2
� 4�1ÿ ÿA�2 cos ÿA��ÿ 2��
ÿ 4�1ÿ ÿ2

A� cos ÿA��� 2��g
� 1

16 �1ÿ ÿ2
A�1=2 cos ��0f�3ÿ2

A ÿ 2ÿA ÿ 1�
� cos ÿA� � �4ÿ2

A ÿ 2ÿA� cos ÿA�

� �1� ÿA�2 cos 2ÿA��� ��
� �1ÿ ÿA�2 cos 2ÿA��ÿ ��g
� 1

16 �1ÿ ÿ2
A�1=2 sin ��0f�3ÿ 2ÿ2

A ÿ ÿ2
A�

� sin 2ÿA� � 4�1ÿ ÿA� sin ÿ�

� �1� ÿA�2 sin 2ÿA��� ��
� �1ÿ ÿA�2 sin 2ÿA��ÿ ��g �31�

and

IC3M��;ÿA� � 1
48 �1ÿ �ÿA=3�2�1=2�1ÿ ÿA=3�2
� �1ÿ cos ��0 cos�2ÿA�=3�
� sin ��0 sin�2ÿA�=3��; �32�

respectively. The intensity pro®les in the beam leading
to the C2 detector can be written in the form

Fig. 6. Contributions of the maverick- and primary-path intensity
pro®les to the total C2 detector intensity pro®le at tilt � = 0�:
(a) mean intensity pro®le; (b) oscillation amplitude pro®le.
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IC2��;ÿA� � AC2��;ÿA� ÿ BC2��;ÿA�
� cos���0 ���C2��;ÿA��; �33�

where AC2 is the mean intensity, BC2 is the amplitude of
oscillation due to changes in ��0 and ��C2 is the
additional phase correction due to dynamical diffrac-
tion. Likewise, the intensity pro®le in the C3 beam is
given by

IC3��;ÿA� � AC3��;ÿA� ÿ BC3��;ÿA�
� cos���0 ���C3��;ÿA��: �34�

The mean intensity and oscillation amplitude pro®les
and the contributions to each from the primary and
maverick paths when the interferometer is level are
shown in Fig. 6 for the C2 beam and Fig. 7 for the C3
beam. These pro®les, which are independent of the
interferometer used, are identical to those calculated
from the spherical-wave dynamical diffraction theory
(Petrascheck & Folk, 1976; Petrascheck, 1979). While
the amplitude of oscillation and the mean intensity
distribution across the beam are the same (at � � 0�) for
C3, they are different for the C2 beam. Also, the
contributions to the amplitude of oscillation of the
primary and maverick paths for the C3 detector and the
primary path for C2 are positive but the contribution of
the maverick paths to the C2 amplitude of oscillation is
negative. Thus, the oscillations in the C2 intensity due to
��0 from the maverick paths are in phase with those in
the C3 intensity while those from the primary paths are
� rad out of phase. Although the intensities in the two
detectors are even functions of the incident spectrum as
determined by ÿ, the pro®les of the intensities as a

function of ÿA are asymmetric and have different
amplitudes of oscillation.

The difference in sign between the amplitudes of
oscillation in intensity due to the primary and
maverick paths explains one of the fundamental
differences between X-ray and neutron interference
and may explain an interesting feature noted in some
neutron phase rotator scans. In neutron phase rotator
scans, the intensity measured by the C2 detector is
observed to oscillate � rad out of phase with that
measured by the C3 detector while in X-ray phase
rotator scans the two intensities oscillate in phase.
The path analysis presented here is just as valid for
X-rays as it is for neutrons but it fails to take into
account the effects of absorption. Since silicon is a
strong X-ray absorber, only the X-rays on one
current branch, the branch with wavefunction nodes
located at the Si atoms, can pass through the inter-
ferometer without being absorbed. Thus all X-rays
counted in the C2 or C3 detectors followed the
maverick trajectories. As noted before, the intensities
of the C2 and C3 maverick paths oscillate in phase.
Similarly, we would expect the intensity in the C2
detector in a neutron experiment to oscillate in phase
with that measured in the C3 detector if the C2
detector were masked to exclude neutrons exiting the
analyzer crystal in the range ÿ1 � ÿA � 1.

This difference may also explain an interesting
feature noted in some neutron phase rotator scans. In
many phase rotator scans such as the one shown in
Fig. 8, the observed amplitude of oscillation in the C2

Fig. 7. Contributions of the maverick- and primary-path intensity
pro®les to the total C3 detector intensity pro®le at tilt � = 0�. The
mean intensity and oscillation amplitude pro®les are the same.

Fig. 8. A sample interferogram measured by rotating the aluminium
phase shifter with � ®xed. The interferogram is split to maximize the
phase accuracy of the ®t while minimizing counting time. Note the
higher amplitude of oscillation in the C2 detector. A possible
explanation of this is given in the text.
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detector is slightly larger than that observed in the C3
detector even though the C3 detector interferogram can
in principle have perfect visibility while the C2 detector
interferogram cannot. The amplitude of intensity oscil-
lations is equal and opposite in the two detectors if all
neutrons are accepted by both detectors. However, if the
C2 detector is slightly misaligned so that some maverick-
path neutrons are excluded, the intensity amplitude
oscillations will be enhanced as the maverick intensity
interferes destructively with the larger primary intensity.
Similarly, if the C3 detector is slightly misaligned, the
intensity amplitude oscillations will be damped since the
maverick intensity interferes constructively with the
primary intensity.

The pro®les of the mean intensity, amplitude of
oscillation and the phase-shift correction due to
dynamical diffraction are all dependent on the inter-
ferometer tilt angle � or, equivalently, the COW formula
gravitational phase shift ��COW. Pro®les of the mean
intensities in the C2 and C3 detectors for various values
of ��COW are shown in Figs. 9 and 10, respectively.
Interference between the primary paths produces a
richer structure of the pro®le and shifts the weight of the
intensity distribution towards the center of the pro®le as
��COW increases. Pro®les of the magnitudes of the
amplitudes of oscillation |BC2| and |BC3| are shown in
Figs. 11 and 12.

Since we have assumed that all neutrons in the C2 and
C3 beams are accepted and counted by the detectors, the
total intensity as measured by the detectors can be
thought of as either the sum of the intensities contrib-
uted by all values of ÿ in the incident beam or as the sum

of the intensity across the beam pro®le. These sums can
be calculated analytically by the use of the following
integrals:

F1��� �
R1
ÿ1

ÿ2�1ÿ ÿ2�1=2 cos��ÿ� dÿ

� ��ÿ3�3�J0��� ÿ �6ÿ �2�J1����; �35�

F2��� �
R1
ÿ1

ÿ�1ÿ ÿ2�1=2 sin��ÿ� dÿ

� ��ÿ2�2J1��� ÿ �J0����; �36�

F3��� �
R1
ÿ1

�1ÿ ÿ2�1=2 cos��ÿ� dÿ

� ��ÿ1J1���: �37�
Here Jn(�) are the ordinary Bessel functions of order n
and argument �. Thus, the total intensity in the C2 and
C3 detectors as functions of the tilt angle � are given by

IC2��� �
R1
ÿ1

IC2��;ÿ� dÿ

� R1
ÿ1

IC2P��;ÿA� dÿA �
R3
ÿ3

IC2M��;ÿA� dÿA

� �11�=32� ÿ 1
8 �F1��� 2�� � F1��ÿ 2��

� F1�2�� ÿ F3�2��� ÿ 1
16 cos ��0

� f4F1�2�� � 4F1��� � F1�2��� ���
� F1�2��ÿ ��� � F3�2��� ��� � F3�2��ÿ ���g
� 1

8 sin ��0f2F2��� � F2�2��� ���
� F2�2��ÿ ���g �38�

and

IC3��� � �5�=32� � 1
8 �F1��� 2�� � F1��ÿ 2��

� F1�2�� � F3��ÿ 2�� ÿ F3��� 2�� ÿ F3�2���
� 1

16 cos ��0f4F1�2�� � 4F1���
� F1�2��� ��� � F1�2��ÿ ��� � F3�2��� ���
� F3�2��ÿ ���g ÿ 1

8 sin ��0f2F2���
� F2�2��� ��� � F2�2��ÿ ���g; �39�

respectively.
The relative intensities in the C2 and C3 detectors as

functions of the tilt angle � are shown in Fig. 13 for both
our symmetric and our skew-symmetric interferometers.
The variation of interference fringe contrast as a func-
tion of � seen in this ®gure was ®rst predicted by Bonse
& Wroblewski (1983, 1984) using a spherical-wave
approach. In this ®gure, the intensities are normalized to
the sum intensity IC2��� � IC3��� to account for the
variations in the intensity due to the dependence on � of
the real experimental distribution of neutron wavevec-
tors accepted by the interferometer. We observe from
equations (38) and (39) that the total intensity in the C2

Fig. 9. Pro®le of the mean intensity across the C2 detector beam as
predicted by dynamical diffraction at various values of ��COW for
the symmetric interferometer.
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and C3 detectors is not constant but instead dependent
on tilt for an interferometer of the more general skew-
symmetric geometry although it is constant for a
symmetric interferometer. However, the amplitudes of
the intensity oscillations in the two detectors due to the
phase factor ��0 are equal and opposite for the two
interferometers.

A comparison of the predictions of this theory with
experimental data measured using 1.8796 AÊ neutrons
with the symmetric interferometer is shown in Fig. 14.
Additional corrections to the theory (Littrell et al., 1997)
such as less than perfect fringe visibility when the
interferometer is level and dephasing due to the distri-
bution of angles of incidence for which the Bragg
condition is satis®ed have been included. There is very
good qualitative agreement between the theory and the
experimental data.

In our recent experiment (Littrell et al., 1997), the
gravitational phase shift was determined by subtracting
the offset phase of an interferogram measured by
varying the angle � of the aluminium phase shifter with
the interferometer level from the offset phase of one
measured at tilt angle �. A series of phase-shifter scans
illustrating the advance of the offset phase as the
interferometer is tilted is shown in Fig. 15. After
subtracting the calculated Sagnac phase shifts and

combining the data measured at both wavelengths used
for each interferometer to remove the effects of
bending, a discrepancy of the order of 1% between the
measured phase shifts and those calculated from theory
remains for both interferometers despite a statistical
precision of the data of the order of 0.1%. Fig. 16 is a
plot of the discrepancies between the theory and the
data as a function of �. Since the measured phase shift is
in between that predicted by the COW formula and that
predicted including dynamical diffraction effects for all
values of � except the large negative values near the
limits of motion of the apparatus, the dynamical
diffraction correction appears to be too large.

5. Single-beam internal interference effects

Earlier in this paper, we noted that the sum of the
intensities in the C2 and C3 detectors are functions of
the tilt angle � both in the total integrated intensity and
in the intensity contribution for each value of ÿ. This is
surprising and somewhat disconcerting as it appears to
be a violation of the idea of conservation of neutrons.
The reason for this is clear upon closer examination of
Fig. 5. Along beam I, the neutron trajectories labeled 6
and 7 recombine and interfere at the point on the mirror
crystal exit surface labeled FI. This interference results
in a swapping of intensity between beam I and the beam
leading to the C4 beam detector, Likewise, paths 2 and 3
recombine coherently at the point FII to swap intensity
back and forth between beam II and the side beam, i.e.
the C1 detector beam. It is these interference loops and
the similar ones in the back half of the interferometer

Fig. 11. Pro®le of the magnitude of intensity oscillations across the C2
detector beam as predicted by dynamical diffraction at various
values of ��COW for the symmetric interferometer.

Fig. 10. Pro®le of the mean intensity across the C3 detector beam as
predicted by dynamical diffraction at various values of ��COW for
the symmetric interferometer.
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that give the primary-beam intensity pro®le its rich
structure.

From the values of the phase accumulated along each
path given in Tables 2 and 3, we ®nd that the phase
difference between paths 2 and 3 is given by

��2 ÿ��3 � ÿ��ÿ 2�� �40�
and the phase difference between paths 6 and 7 by

��6 ÿ��7 � ÿ��� 2��: �41�
The phase shifts accumulated along paths 1, 4, 5 and 8
are not needed to calculate the intensities in the C1 and
C4 beams and in beams I and II between the mirror and
analyzer crystal blades. The amplitudes of the paths
contributing intensity to the C1 beam and beam II after
the mirror blade MII are given in Tables 4 and 5,
respectively. The amplitudes of the paths contributing
intensity to beam I and the C4 beam after the mirror
blade MI are given in Tables 6 and 7. At the back surface
to the mirror crystal MII in beam II, the intensity as a
function of incident ÿ measured in the C1 detector is
given by

IC1��;ÿ� � 1
4 �1ÿ ÿ2�ÿ1=2�1� ÿ2� ÿ 1

8 �1ÿ ÿ2�1=2

� cos ÿ��ÿ 2�� �42�

and the intensity that continues along the interfering
beam by

III��;ÿ� � 1
8 �1ÿ ÿ2�1=2�2� cos ÿ��ÿ 2���: �43�

Similarly, the intensities at the other mirror crystal MI

are

IC4��;ÿ� � 1
16 �1ÿ ÿ2�ÿ3=2��1� ÿ�4 � �1ÿ ÿ�4�
� 1

8 �1ÿ ÿ2�1=2�1� cos ÿ��� 2��� �44�
in the C4 beam, and

II��;ÿ� � 1
4 �1ÿ ÿ2�ÿ1=2�1� ÿ2�
ÿ 1

8 �1ÿ ÿ2�1=2 cos ÿ��� 2�� �45�
along beam I. The reason why the sum intensity in the
C2 and C3 detectors is not constant is now evident. We
see from equation (43) that paths 2 and 3 interfere
constructively in the interfering beam when the inter-
ferometer is level so that the total intensity in beam II is
increased. Likewise, equation (45) shows that paths 6
and 7 interfere destructively so that the intensity in
beam I is reduced. However, the tilt-angle-dependent
phase shift along beam I oscillates faster than the phase
shift in beam II when d2 > d1 (as shown in Fig. 5).

Fig. 12. Pro®le of the magnitude of intensity oscillations across the C3
detector beam as predicted by dynamical diffraction at various
values of ��COW for the symmetric interferometer.

Fig. 13. Theoretically predicted tilt-angle interferograms normalized to
C2+C3 to compensate for the dependence on tilt of the intensity of
neutrons accepted by the interferometer: (a) the symmetric
interferometer; (b) the skew-symmetric interferometer.
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One of the consequences of the tilt-dependent variation
of the intensity between the mirror and analyzer blades
of the interferometer is that the intensity measured in
the C2 and C3 detectors will vary even if beam I or beam
II is blocked. For example, if beam I is blocked, then the
intensity of distributions as a function of incident ÿ are
given by

IIIC2��;ÿ� � 1
16 �1ÿ ÿ2�3=2�2� cos 2ÿ�� cos ÿ��� 2��
� cos ÿ��ÿ 2��� �46�

for the C2 detector, and

IIIC3��;ÿ� � 1
16 �1ÿ ÿ2�1=2�1� ÿ2��2� cos ÿ��ÿ 2���
ÿ 1

16 �1ÿ ÿ2�3=2�cos 2ÿ�� cos ÿ��� 2���
�47�

for the C3 detector. Likewise, the intensity distributions
in the C2 and C3 detector beams when beam II is
blocked are given by

IIC2��;ÿ� � 1
32 �1ÿ ÿ2�ÿ1=2��1� ÿ�4 � �1ÿ ÿ�4
� 2�1ÿ ÿ2�2�1� cos 2ÿ���
ÿ 1

16 �1ÿ ÿ2�1=2�1� ÿ2��cos ÿ��ÿ 2��
� cos ÿ��� 2��� �48�

and

IIC3��;ÿ� � 1
16 �1ÿ ÿ2�1=2�1� ÿ2��2� cos ÿ��ÿ 2���
ÿ 1

16 �1ÿ ÿ2�3=2�cos 2ÿ�� cos ÿ��� 2���:
�49�

These single-beam intensity distributions, like those
including contributions from both beams, are even
functions of G. The tilt-dependent mean values of the

Fig. 14. Comparison of the theoretically predicted normalized tilt-angle
interferogram scaled to match visibility at � = 0� with experimen-
tally observed data for 1.8796 AÊ neutrons in the symmetric
interferometer. (a) Theoretical prediction. (b) Experimental data.

Fig. 15. A series of phase rotator scans taken for various values of a
using the wavelengths (a) 2.1440 AÊ and (b) 1.0780 AÊ in the skew-
symmetric interferometer. The phase advances almost the same
amount with each step and nearly twice as much for the 2.1440 AÊ

data as for the 1.0780 AÊ data.

Table 4. Amplitudes of the paths in the C1 detector or side
beam

Path Coef®cient Amplitude

1 R��ÿ�T��ÿÿ� 1
4 �1ÿ ÿ2�1=2�1� ÿ�

2 R��ÿ�T��ÿÿ� 1
4 �1ÿ ÿ2�1=2�1ÿ ÿ�

3 R��ÿ�T��ÿÿ� ÿ 1
4 �1ÿ ÿ2�1=2�1� ÿ�

4 R��ÿ�T��ÿÿ� ÿ 1
4 �1ÿ ÿ2�1=2�1ÿ ÿ�

Table 5. Amplitudes of the paths in beam II between the
intermediate or mirror blade and the analyzer blade of

the interferometer

Path Coef®cient Amplitude

1 R��ÿ�R��ÿÿ� 1
4 �1ÿ ÿ2�

2 R��ÿ�R��ÿÿ� ÿ 1
4 �1ÿ ÿ2�

3 R��ÿ�R��ÿÿ� ÿ 1
4 �1ÿ ÿ2�

4 R��ÿ�R��ÿÿ� 1
4 �1ÿ ÿ2�
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intensity distributions in the C2 and C3 detector beams
given in equations (25) and (26) are the sums of the
contributions to the distributions from the two beams.

While the area enclosed between the paths is different
for each value of ÿ, the points FI and FII are ®xed at the
position ÿM � 0. Since there is a focused image of the
incident beam at these points, the portions of beam I and
beam II in the back half of the interferometer coming
from points FI and FII are referred to as the focused
beams. Likewise, we refer to the beams coming from
points A and C at position ÿM � 2ÿ and B and D at
ÿM � ÿ2ÿ as the defocused beams. Thus, the distribu-

tion of neutrons exiting the mirror blade at position D as
a function of ÿM is

PD�ÿM� � 1
2 �1ÿ �ÿM=2�2�ÿ3=2 �50�

based on the assumed distributions in y and ÿ of the
incident beam given by equations (23) and (24),
respectively. Neutrons with a given value of ÿ contribute
an intensity of

IC1D��;ÿ� � 1
8 �1ÿ ÿ2�ÿ1=2�1� ÿ2� �51�

to the defocused beam and

IC1F��;ÿ� � 1
8 �1ÿ ÿ2�ÿ1=2�1� ÿ2�
ÿ 1

8 �1ÿ ÿ2�1=2 cos ÿ��ÿ 2�� �52�
to the focused beam to the C1 detector, and intensities
of

IIID��;ÿ� � 1
8 �1ÿ ÿ2�1=2 �53�

to the defocused beam and

IIIF��;ÿ� � 1
8 �1ÿ ÿ2�1=2�1� cos ÿ��ÿ 2��� �54�

to the focused beam continuing along beam II. The
intensity pro®les at the exit surface of the mirror blade
are thus

IC1��;ÿM� � 1
16 �1ÿ �ÿM=2�2�1=2�1� ÿM=2�2

� 1
8 ��ÿM�

R1
ÿ1

��1ÿ ÿ2�ÿ1=2�1� ÿ2�

ÿ �1ÿ ÿ2�1=2 cos ÿ��ÿ 2��� dÿ �55�
for the C1 detector, and

III��;ÿM� � 1
16 �1ÿ �ÿM=2�2�1=2 � 1

8 ��ÿM�

� R1
ÿ1

f�1ÿ ÿ2�1=2�1� cos ÿ��ÿ 2���g dÿ

�56�
continuing in beam II, where �(ÿM) is the Dirac �
function at ÿM � 0. Following a similar analysis, the
intensity pro®les in the C4 detector beam and along
beam I are given by

Table 6. Amplitudes of the paths in the C4 detector or
monitor beam

Path Coef®cient Amplitude

5 T��ÿ�T��ÿ� 1
4 �1ÿ ÿ2�

6 T��ÿ�T��ÿ� 1
4 �1ÿ ÿ2�

7 T��ÿ�T��ÿ� 1
4 �1ÿ ÿ2�

8 T��ÿ�T��ÿÿ� 1
4 �1� ÿ2�

Table 7. Amplitudes of the paths in beam I between the
intermediate or mirror blade and the analyzer blade of

the interferometer

Path Coef®cient Amplitude

5 T��ÿ�R��ÿ� 1
4 �1ÿ ÿ2�1=2�1ÿ ÿ�

6 T��ÿ�R��ÿ� ÿ 1
4 �1ÿ ÿ2�1=2�1ÿ ÿ�

7 T��ÿ�R��ÿ� 1
4 �1ÿ ÿ2�1=2�1� ÿ�

8 T��ÿ�R��ÿ� ÿ 1
4 �1ÿ ÿ2�1=2�1� ÿ�

Fig. 16. Graphical representation of the difference between the phase
shift measured using (a) the skew-symmetric interferometer and (b)
the symmetric interferometer and ��COW. The solid curves are the
difference between the theoretical gravitational phase shift and
��COW.
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IC4��;ÿM� � 1
32 �1ÿ �ÿM=2�2�ÿ3=2��1� ÿM=2�4
� �1ÿ ÿM=2�4� � 1

8 ��ÿM�

� R1
ÿ1

f�1ÿ ÿ2�1=2�1� cos ÿ��� 2���g dÿ

�57�
and

II��;ÿM� � 1
16 �1ÿ �ÿM=2�2�ÿ1=2�1ÿ ÿM=2�2 � 1

8 ��ÿM�

� R1
ÿ1

��1ÿ ÿ2�ÿ1=2�1� ÿ2� ÿ �1ÿ ÿ2�1=2

� cos ÿ��� 2��� dÿ; �58�
respectively. These intensity pro®les are shown in Fig.
17.

These intensity distributions lead to a total intensity
measured in the C1 detector of

IC1��� �
R1
ÿ1

IC1��;ÿ� dÿ � �3�=8� ÿ 1
8 F3��ÿ 2��: �59�

If beam I is blocked, the total intensities in the C2 and
C3 detector beams become

IIIC2��� � �3�=64� ÿ 1
16 �F1��� 2�� � F1��ÿ 2��

� F1�2��� � 1
16 �F3��� 2�� � F3��ÿ 2��

� F3�2��� �60�

and

IIIC3��� � �5�=64� � 1
16 �F1��� 2�� � F1��ÿ 2��

� F1�2��� ÿ 1
16 �F3��� 2�� ÿ F3��ÿ 2��

� F3�2���: �61�
In this situation, the intensities in the C1, C2, and C3
detectors sum to �=2 These predictions are compared
with experimental results in Fig. 18. As before, both the
theoretical curves and the data have been normalized to
the total intensity to account for any �-dependent
variation in the intensity accepted by the interferometer.
The theory appears to overestimate the rate at which the
measured intensity varies due to gravitational phase
shifts in single path interference in a manner similar to
that noted previously in COW experiments where the
dynamical diffraction effects were considered (Werner
et al., 1988; Littrell et al., 1997). If beam II is blocked,
then the intensities measured by the C2 and C3 detec-
tors are

IIC2��� � �19�=64� ÿ 1
16 �F1��� 2�� � F1��ÿ 2��

� F1�2��� ÿ 1
16 �F3��� 2�� � F3��ÿ 2��

ÿ F3�2��� �62�

Fig. 17. Intensity pro®les of (a) the C4 or monitor detector beam,
(b) beam I, (c) the C1 detector or side beam and (d) beam II after
the intermediate or mirror blades of the interferometer at tilt angle
� = 0�.

Fig. 18. Comparison of (a) the theoretically predicted normalized tilt-
angle interferogram measured with beam I blocked by an absorber
(normalized to the sum of the intensities in the C1, C2 and C3
detectors) with (b) experimentally observed data for 1.8796 AÊ

neutrons in the symmetric interferometer.
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and

IIC3��� � �5�=64� � 1
16 �F1��� 2�� � F1��ÿ 2��

� F1�2��� ÿ 1
16 �F3��� 2�� ÿ F3��ÿ 2��

� F3�2���: �63�
A comparison of experimental data with the predicted
intensity in the C2 and C3 detectors normalized to their
sum is shown in Fig. 19. Since the total intensity of the
defocused-beam contribution to the C4 detector as
predicted by this theory is in®nite, just like the total
incident intensity, the prediction for the total intensity in
the C4 detector is meaningless. However, the total
intensity in the focused beam to the C4 detector is ®nite
and given by

IC4F � 1
8

R1
ÿ1

f�1ÿ ÿ2�1=2�1� cos ÿ��� 2���g dÿ

� �=16� 1
8 F3��� 2��: �64�

The sum of the intensities in the C2 and C3 beams and
the focused portion of the C4 beam is independent of �
when beam II is blocked. Although the sum of the
intensities in C2 and C3 is �-dependent, the sum of the
intensities in all four detectors is independent of tilt.

Thus, the principle of conservation of neutrons is satis-
®ed.

6. Interferometry with restricted beams

In certain situations in neutron interferometry experi-
ments, it is advantageous to restrict the size or pro®le of
the neutron beams within the interferometer. One
example of such a situation is an experiment involving a
small or inhomogeneous sample. In order to properly
interrogate the sample, a narrow neutron beam is
needed. A natural way of achieving this condition is
suggested by the existence of the focused beams after
the mirror blades. By using a narrow incident slit and
identical slits on the back surface of one or both of the
mirror blades, the spreading of the beam due to
diffraction can in principle be overcome to make a
narrow coherent beam. The mean intensities and
amplitudes of oscillation predicted for the C2 and C3
detectors for various combinations of focused, de-
focused and unrestricted beams with the interferometer
level are given in Table 8. From this table, we observe
that a narrow beam is best obtained by using the focused
part of beam II and all of beam I. If the focused part of
both beams is used, interference is quite poor as the
distribution in ÿ is quite different for the two beams and
each ÿ component interferes only with itself.

7. Conclusions

The apparently simple Mach±Zehnder geometry of the
neutron interferometer is actually quite complex. The
splitting of the incident beam into multiple currents
forming multiple interferometric loops by dynamical
diffraction processes leads to subtle effects in COW-type
gravity experiments. Although inclusion of these effects
greatly enhances the agreement between theory and
experiment both qualitatively and quantitatively,
signi®cant discrepancies remain. One problem is that the
magnitudes of observed phase shifts due to gravity are
consistently lower than theoretically predicted. Another
dif®culty is that the tilt-angle interferograms are always
asymmetric between positive and negative tilts, even
though theory predicts symmetric interferograms.

One possible source of these dif®culties is a coupling
between bending and strain in the interferometer crys-
tals and the dynamical diffraction corrections. Our
previous assumption that bending and strain are
decoupled from dynamical diffraction is likely to be
incorrect. As seen from equation (14), the off-Bragg
parameter y depends on both the magnitude and sign of
ÿ. Any strains or bending of the crystal will necessarily
change either the lattice spacing of the interferometer
blades or the orientation of the lattice planes of the
blades relative to one another. Thus, y may be slightly
different for each blade, contrary to the assumption used
in carrying out these calculations that y (and, more

Fig. 19. Comparison of (a) the theoretically predicted normalized tilt-
angle interferogram measured with beam I blocked by an absorber
(normalized to the sum of the intensities in the C2 and C3 detectors)
with (b) experimentally observed data for 1.8796 AÊ neutrons in the
symmetric interferometer.
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importantly, ÿ) is the same in all blades. Two methods
have been suggested for avoiding these dif®culties.
Either the experiment can be performed with the
interferometer submerged in a neutron-transparent ¯uid
that has the same density as silicon (see comments in
Werner et al., 1988; Werner, 1997) or the interferometer
can be rotated about an axis of symmetry (Littrell et al.,
1997). Although these techniques may reduce or even
remove any dependence of the bending of the inter-
ferometer on the tilt angle, they do nothing to solve the
problem of static residual strains inevitably produced in
the process of manufacturing and mounting the inter-
ferometer.

Another possible source of discrepancy is the
assumption of a narrow entrance slit. The analysis
presented here is valid if the entrance slit width is much
smaller than the interferometer blade thickness. In the
actual experimental apparatus, we used circular aper-
tures with diameters of more than twice the thickness of
the interferometer blades. For this situation, it may be
equally valid to consider the effects of a narrow slit on
the exit face of the ®rst or splitter crystal. The natural
way to resolve doubts relating to this dif®culty is to
repeat the experiment with a narrow entrance slit and
perhaps again with a large entrance slit and a narrow slit
on the back surface of the splitter blade, using position-
sensitive detectors in the exit beams to include infor-
mation about the distribution of neutrons across the
beams as well as the integrated intensity. In such a study
of the transverse intensity distribution (and phase-shift
distribution in the 0 and G beams), it is necessary to use
entrance slits that are narrow in the scattering plane of
the interferometer and high-resolution position-sensi-
tive detectors to prevent averaging of the ®ne structure
expected to be present rendering it undetectable.
However, these methods do nothing to resolve the
problems associated with bending and strain, although
they may provide a way to study them through MoireÂ
fringes.

It may be that the best way to decouple the dynamical
diffraction effects from those due to bending and strain
is to use a restricted beam geometry. One way to do this
[the method used to separate the beams in two-crystal
interferometers (Zeilinger et al., 1979)] is to use narrow

slits on both the entrance and exit sides of the splitter
crystal so that only a small range of ÿ is accepted by the
interferometer. Another approach would be to use a
symmetric interferometer and mask the C2 and C3
detector beams so that the primary paths are excluded.
According to equations (30) and (32), the contribution
to the dynamical diffraction phase shift from the
maverick paths is entirely due to the asymmetry of the
interferometer. The dif®culty with either of these
approaches is that the neutron counting rates would be
greatly reduced, both increasing the length of time
needed to complete the experiment and decreasing the
signal-to-noise ratio of the data.

A further possible source of discrepancy is the
perturbative nature of this theoretical calculation.
Dynamical diffraction within a single crystal is highly
dispersive in the sense that neutrons with only slightly
different wavevector can differ tremendously in their
trajectories through the crystal. As Werner (1980) has
shown theoretically and Raum et al. (1995, 1997) have
demonstrated experimentally, this leads to an enhance-
ment of the curvature due to gravity of the trajectories
of neutrons within the crystal. However, numerical
simulations including this effect by Werner et al. (1988)
show that this leads to an increase in magnitude of the
dynamical diffraction correction phase. This change is
both too small to account for the discrepancy between
the theory and the experimental data and in the wrong
direction. Bonse & Wroblewski (1983, 1984) have
performed a similar calculation to describe the dyna-
mical diffraction effects in an accelerating inter-
ferometer.

Finally, we would like to say a word about dynamical
diffraction effects due to other potentials. These
diffraction corrections are not unique to the effects of
gravity. Since the phase difference between any two of
the paths predicted by dynamical diffraction is propor-
tional to the area between them, the Sagnac phase shift
will necessarily require similar corrections. These
corrections can be simply obtained by substituting
��Sagnac for ��COW in all of the equations. Likewise, if
the interferometer is in a magnetic ®eld gradient, then
calculation of the phase shift due to the Zeeman
potential V�r� � ln � B�r� will also require knowledge of

Table 8. Mean intensities and amplitudes of oscillation in the C2 and C3 detector beams at � = 0� for various
combinations of the focused and defocused beams

Beam I Beam II C2 mean C2 amplitude C3 mean C3 amplitude

Focused Focused 5�=32 ÿ�=32 3�=32 �=32
Focused Defocused 17�=128 ÿ�=64 7�=128 �=64
Focused Open 29�=128 ÿ3�=64 11�=128 3�=64
Defocused Focused 17�=128 ÿ5�=64 11�=128 5�=64
Defocused Defocused 11�=64 ÿ�=64 5�=64 �=64
Defocused Open 5�=32 ÿ3�=32 �=8 3�=32
Open Focused 37�=128 ÿ3�=64 19�=128 7�=84
Open Defocused 19�=64 ÿ�=32 7�=64 �=32
Open Open 23�=64 ÿ9�=64 9�=64 9�=64
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dynamical diffraction corrections. The functional form
for the dynamical diffraction correction for the phase
shift due to a magnetic ®eld gradient will be essentially
the same if the gradient is constant in position but
substantially different otherwise.
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